skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Charman, Dan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Loss of peat through increased burning will have major impacts on the global carbon cycle. In a normal hydrological state, the risk of fire propagation is largely controlled by peat bulk density and moisture content. However, where humans have interfered with the moisture status of peat either via drainage, or indirectly via climate change, we hypothesise that its botanical composition will become important to flammability, such that peats from different latitudes might have different compositionally-driven susceptibility to ignition. We use pyrolysis combustion flow calorimetry to determine the temperature of maximum thermal decomposition (Tmax) of peats from different latitudes, and couple this to a botanical composition analysis. We find that tropical peat has higherTmaxthan other regions, likely on account of its higher wood content which appears to convey a greater resistance to ignition. This resistance also increases with depth, which means that loss of surface peat in tropical regions may lead to a reduction in the subsequent ignitability of deeper peat layers as they are exposed, potentially resulting in a negative feedback on increased fire occurrence and severity. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract. Peatlands have often been neglected in Earth system models (ESMs).Where they are included, they are usually represented via a separate, prescribed grid cell fraction that is given the physical characteristics of a peat (highly organic) soil. However, in reality soils vary on a spectrum between purely mineral soil (no organic material) and purely organicsoil, typically with an organic layer of variable thickness overlying mineral soil below. They are also dynamic, with organic layer thickness and its properties changing over time. Neither the spectrumof soil types nor their dynamic nature can be captured by current ESMs. Here we present a new version of an ESM land surface scheme (Joint UK Land Environment Simulator, JULES) where soil organic matter accumulation – and thus peatland formation, degradation and stability – is integratedin the vertically resolved soil carbon scheme. We also introduce the capacity to track soil carbon age as a function of depth in JULES and compare this to measured peat age–depth profiles. The new scheme is tested and evaluated at northern and temperate sites. This scheme simulates dynamic feedbacks between the soil organic material and its thermal and hydraulic characteristics. We show that draining the peatlands can lead to significant carbon loss, soil compaction and changes in peat properties. However, negative feedbacks can lead to the potential for peatlands to rewet themselves following drainage.These ecohydrological feedbacks can also lead to peatlands maintaining themselves in climates where peat formation would not otherwise initiate in the model, i.e. displaying some degree of resilience. The new model produces similar results to the original model for mineral soils and realistic profiles of soil organic carbon for peatlands.We evaluate the model against typical peat profiles based on 216 northern and temperate sites from a global dataset of peat cores.The root-mean-squared error (RMSE) in the soil carbon profile is reduced by 35 %–80 % in the best-performing JULES-Peat simulationscompared with the standard JULES configuration. The RMSE in these JULES-Peat simulations is 7.7–16.7 kg C m−3 depending on climate zone, which is considerably smaller than the soil carbon itself (around 30–60 kg C m−3). The RMSE at mineral soil sites is also reducedin JULES-Peat compared with the original JULES configuration (reduced by ∼ 30 %–50 %). Thus, JULES-Peat can be used as a complete scheme that simulates both organic and mineral soils. It does not requireany additional input data and introduces minimal additional variables to the model. This provides a new approach for improving the simulation of organic and peatland soils andassociated carbon-cycle feedbacks in ESMs. 
    more » « less
  3. Abstract. The 852/3 CE eruption of Mount Churchill, Alaska, was one of the largestfirst-millennium volcanic events, with a magnitude of 6.7 (VEI 6) and atephra volume of 39.4–61.9 km3 (95 % confidence). The spatial extent of the ash fallout from this event is considerable and the cryptotephra (White River Ash east; WRAe) extends as far as Finland and Poland. Proximal ecosystem and societal disturbances have been linked with this eruption; however, wider eruption impacts on climate and society are unknown. Greenland ice core records show that the eruption occurred in winter 852/3 ± 1 CE and that the eruption is associated with a relatively moderate sulfate aerosol loading but large abundances of volcanic ash and chlorine. Here we assess the potential broader impact of this eruption using palaeoenvironmental reconstructions, historical records and climate model simulations. We also use the fortuitous timing of the 852/3 CE Churchill eruption and its extensively widespread tephra deposition of the White River Ash (east) (WRAe) to examine the climatic expression of the warm Medieval Climate Anomaly period (MCA; ca. 950–1250 CE) from precisely linked peatlands in the North Atlantic region. The reconstructed climate forcing potential of the 852/3 CE Churchill eruptionis moderate compared with the eruption magnitude, but tree-ring-inferredtemperatures report a significant atmospheric cooling of 0.8 ∘Cin summer 853 CE. Modelled climate scenarios also show a cooling in 853 CE, although the average magnitude of cooling is smaller (0.3 ∘C). The simulated spatial patterns of cooling are generally similar to those generated using the tree-ring-inferred temperature reconstructions. Tree-ring-inferred cooling begins prior to the date of the eruption suggesting that natural internal climate variability may have increased the climate system's susceptibility to further cooling. The magnitude of the reconstructed cooling could also suggest that the climate forcing potential of this eruption may be underestimated, thereby highlighting the need for greater insight into, and consideration of, the role of halogens and volcanic ash when estimating eruption climate forcing potential. Precise comparisons of palaeoenvironmental records from peatlands acrossNorth America and Europe, facilitated by the presence of the WRAe isochron,reveal no consistent MCA signal. These findings contribute to the growingbody of evidence that characterises the MCA hydroclimate astime-transgressive and heterogeneous rather than a well-defined climaticperiod. The presence of the WRAe isochron also demonstrates that nolong-term (multidecadal) climatic or societal impacts from the 852/3 CEChurchill eruption were identified beyond areas proximal to the eruption.Historical evidence in Europe for subsistence crises demonstrate a degree of temporal correspondence on interannual timescales, but similar events were reported outside of the eruption period and were common in the 9thcentury. The 852/3 CE Churchill eruption exemplifies the difficulties ofidentifying and confirming volcanic impacts for a single eruption, even whenthe eruption has a small age uncertainty. 
    more » « less